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Abstract—Sensor-based monitoring of natural gas pipelines is
crucial for safety and detecting sensor faults is pivotal for reliable
operations. This paper investigates the problem of fault diagnosis
in a natural gas pipeline under transient flow, characterized
by a system of hyperbolic partial differential equations (PDEs).
A data-fusion approach based on an unscented Kalman filter
(UKF) is employed to perform sensor-fault detection and isolation
(SFDI). The architecture consists of a bank of local UKFs to
provide the state estimates, which are further analyzed to identify
sensor faults. The performance achieved by the proposed method
is promising even in the case of a nonlinear flow model.

Index Terms—Data fusion, fault detection and isolation, partial
differential equations, unscented Kalman filter, transient flow.

I. INTRODUCTION

Natural-gas pipelines are subject to failures because of
deterioration, aging, and environmental factors. Unrecognized
faults can cause accidents, property damage, and environmen-
tal contamination; thus sensor-based monitoring systems are
commonly deployed to increase system safety and reduce the
risk of catastrophic failures [1]. However, sensors are prone
to errors and failures as well, thus sensor-fault detection and
isolation (SFDI) is crucial for keeping the safety requirements.

SFDI methods are broadly categorized into model-based [2]
and data-driven methods [3]. Although data-driven techniques
have recently gained large interest [4], [5], they cannot guaran-
tee reliable performance for dynamic/transient scenarios. For
such cases, model-based approaches could exploit the avail-
ability of well-established accurate flow models describing
the transient behavior of gases in pipelines. In this context,
Bayesian filtering techniques were investigated for real-time
estimation of gas-flow transients in pipelines [6], [7]. However,
model-based SFDI are unexplored due to the highly nonlinear
and complex nature of gas-flow models, characterized by a
hyperbolic system of partial differential equations (PDEs).

This paper develops a model-based SFDI approach com-
bining data fusion and unscented Kalman filter (UKF) [8]
for a system of nonlinear hyperbolic PDEs, describing the
transient flow of natural-gas in pipelines. The UKF-based
architecture builds upon several local filters and exploits data
fusion suitable for SFDI in large-scale systems. In compari-
son to centralized architectures [9], the distributed approach
reduces the overall computational burden and improves de-
cision support. The effectiveness of the proposed method is

0This work was partially supported by the Research Council of Norway
under Project 311902 (SIGNIFY) within the framework IKTPLUSS.

assessed for various types of sensor faults using simulated
nonlinear spatial-temporal data. To the best of our knowledge,
the proposed scheme is the first model-based approach that
investigates SFDI for a highly nonlinear hyperbolic system of
PDEs describing the transient gas-flow in pipelines.

The rest of the paper is organized as follows: Sec. II
describes the system of PDEs, modeling the transient flow of
natural gas in pipelines; the SFDI architecture is developed
in Sec. III; Sec. IV presents and discusses the achieved
performance; some final remarks are given in Sec. V.

II. SYSTEM MODEL FOR TRANSIENT FLOW

The mathematical model for natural-gas transients in
pipelines can be modeled as a system of hyperbolic PDEs
in terms of pressure, temperature, and flow [6] as

∂w

∂t
= −A(w)

∂w

∂x
− s(w) , (1)

where (x, t) ∈ [0, L]× [0, tf ] represents the system dynamics
in space and time, respectively, with L being the pipeline
length and tf being the time span; and w = [p, ṁ, T ]T

is a vector collecting pressure, flow, and temperature. The
coefficient matrix A(w) ∈ R3×3 and the vector s(w) ∈ R3×1

are defined in Eq. (2) at the top of the next page, where
A and R denote the cross-sectional area and the ideal gas
constant, respectively; z is the gas compressibility factor; Cp

and ρ represent the specific heat at constant pressure and
density1. The parameters α1 and α2 can be expressed as
α1 = 1+ T

z

(
∂z
∂T

)
p

and α2 = 1− p
z

(
∂z
∂p

)
T

; αs is the isentropic
wave speed [6] and the frictional force w per unit length
is given as w = 1

8fρv|v|πd, where d is the diameter and
v is the velocity. The friction factor f is computed using
the Colebrook–White equation, 1√

f
= −2log

(
ϵ

3.7d + 2.51
Re

√
f

)
,

being ϵ the roughness and Re the Reynolds number. The heat
transfer between the natural gas and its surroundings per unit
length and time is q = −πdU(T −Ts), where U is the overall
heat transfer coefficient and Ts is the ambient temperature.

The numerical method of lines is an effective way to solve
the system of PDEs. We used a 5-point, 4th-order finite
difference method to spatially discretize the system of PDEs in
Eq. (1) and convert into ordinary differential equations (ODEs)

1Thermodynamic properties Cp, z and ρ are taken from GERG2004 [10].
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A(w)=


− ṁ(α2

sα2−RTz)

Ap

α2
s

A

α2
sṁα1

AT

A−α2
sα

2
2Cpṁ

2−Rα2
sα

2
1α2ṁ

2z

ACpp2
ṁ(α2Cpα

2
s−Rzα2

sα
2
1+RTCpz)

ACpp

α2
sα1ṁ

2(α2Cp−Rα2
1z)

ATCpp

−RTα2
sα1α2ṁz

ACpp2
RTα2

sα1z

ACpp

Rṁz(α2
sα

2
1+TCp)

ACpp

, s(w)=

−
α2
sα1(Aqp+RTṁwz)

A2TCpp

w

−α2
sα2(Aqp+RTṁwz)

A2Cpp2

 (2)

Fig. 1: UKF-based data-fusion architecture.

dw(t)

dt
= A(w)Dw(t)− s(w, t) , (3)

where w(t) = [p1(t), . . . , pn(t), ṁ1(t), . . . , ṁn(t), T1(t),
. . . , Tn(t)]

T ∈ R3n×1 is the state vector; A(w) ∈ R3n×3n

and s(w, t) ∈ R3n×1 are the assembled matrix and
vector, D is the computational matrix given in [6].
The 4th-order Runge-Kutta method is used to solve the
ODEs in Eq. (3). The discretized equations are modeled
as a state-space model with solution advanced in time
w(t + ∆t) = w(t) + 1

6 (k1 + 2k2 + 2k3 + k4), where
k1=∆tf(t,w(t)), k2=∆tf

(
t+ 1

2∆t,w(t) + 1
2k1

)
,

k3 = ∆tf
(
t+ 1

2∆t,w(t) + 1
2k2

)
, and k4 =

∆tf (t+∆t,w(t) + k3).

III. SFDI ARCHITECTURE

The architecture, shown in Fig. 1, consists of 4 main stages:
(i) sensors measurements are grouped into subsets; (ii) local
filters produce local estimates of the state vector; (iii) global
states are inferred from the information mixture built by
fusing local estimates; (iv) local filters are updated with global
estimates. The state-space model at the ith local filter is

xi,k = f(xi,k−1,uk−1) +wi,k ,

yi,k = hi(xi,k,uk) + vi,k ,

where f(·) and hi(·) are the nonlinear mappings. The state
vector xi,k ∈ Rnx×1 is defined as xi,k = [p1(k), . . . ,
pn(k), ṁ1(k), . . . , ṁn(k), T1(k), . . . , Tn(k)]

T ; uk and yi,k

are the system input and output, respectively; wi,k and vi,k

denote the process noise and the measurement noise with
covariance matrices Qi,k and Ri,k, respectively.

Data fusion exploits parallel UKFs as local filter to accu-
rately estimate the nonlinear states in 5 steps.
Step 1: Initialization (depending on the use-case) of the state
estimate x̂i,0|0 and covariance matrix Pi,0|0 at each local filter.

Step 2: Sigma points are computed for ith local filter with
mean x̂i,k−1|k−1 and covariance matrix Pi,k−1|k−1, where

χi,k|k =[x̂i,k|k, x̂i,k|k + ξi,k|k, x̂i,k|k − ξi,k|k],

ξi,k|k =
√
(nx+λ)Pi,k|k , λ = α2(nx + k)− nx ,

where nx is the length of the state vector and λ specifies the
sigma point spread.
Step 3: Time (resp. measurement) update of the ith local filter
shown in Eq. (4) (resp. Eq. (5)) at the top of the next page.
Step 4: Global estimates via data fusion and information
mixture as x̂m,k = Pm,k

∑N
i=1 P

−1
i,k|kx̂i,k|k, with Q−1

m,k =∑N
i=1 Q

−1
i,k and P−1

m,k =
∑N

i=1 P
−1
i,k|k.

Step 5: Local-filter update via global estimates, Qi,k =

βiQm,k, Pi,k = βiPm,k, x̂i,k|k = x̂m,k, with
∑N

i=1 βi = 1.
For SFDI, we consider a threshold rule on the state variance

Vk ∈ Rnx×1 and the state residual ri,k for each local
filter, defined as Vj,k = 1

N

∑N
i=1

(
x̂
(j)
i,k|k − 1

N

∑N
i=1 x̂

(j)
i,k|k

)
and r2i,k = (x̂i,k − xm,k)

T
(x̂i,k − xm,k). The state variance

exhibits large values in case of sensor faults, thus performing
fault detection. Isolation is performed based on specific com-
binations of local sensors: with N sensors, N locals are used
with each local having N − 1 measurements. For instance, if
the jth sensor is faulty, then N − 1 locals containing the jth
sensor will be affected while only one local would be accurate;
thus isolation is based on the maximum value of residuals by
identifying the missing sensor from the accurate local.

IV. SIMULATION RESULTS AND DISCUSSION

We ran numerical simulations for a high-pressure natural-
gas pipeline equipped with sensors measuring pressure, tem-
perature, and flow rate, assuming the following specifications:
L = 150 km, d = 1.4 m, ϵ = 0.016 mm, Ts = 5 s and
U = 2.84 Wm−2K−1 and boundary conditions p(0, t) = 8.4
MPa, T (0, t) = 303.15 K, ṁ(L, t) = f(t), for a time
interval tf ∈ [0, 3600 s]. The spatial-temporal evolution of
the fault/noise-free state variables is shown in Fig. 2. The
measurements are generated including zero-mean additive
Gaussian noise with st.dev. 0.0004 MPa, 1.5 K and 2.5 kgs−1,
respectively, for pressure, temperature and flow rate.

The proposed algorithm (fusing UKF) was tested on: Sce-
nario 1, the SFDI architecture processes noisy measurements;
Scenario 2, faulty sensors are simulated by superimposing
fault signals to the noisy measurements. We considered 21
sensor locations providing 63 signals (21 for pressure, 21 for
temperature, and 21 for flow rate), and employed N = 63 local
filters, each receiving 62 sensor measurements. The initializa-
tion was Pi,0|0 = I63, Qi,k = σ2

w,kI63, with σ2
w,k = 0.1 σ2

v,k,
σ2
w,k and σ2

v,k being process and measurement noise variances.
Scenario 1 provides an assessment of noise impact on the es-

timation capabilities via root mean square error (RMSE). The
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χi,j,k|k−1 = f(χi,j,k−1|k−1,uk−1) , x̂i,k|k−1 =

2nx∑
j=0

W
(m)
j χi,j,k|k−1 , γi,j,k|k−1 = hi(χi,j,k|k−1) , ŷi,k|k−1 =

2nx∑
j=0

W
(m)
j γi,j,k|k−1 ,

W
(m)
0 =

λ

λ+ nx
, W

(c)
0 = W

(m)
0 + (1− α2 + β) , W

(m)
j = W

(c)
j =

1

2(λ+ nx)
, j = 1, . . . , 2nx,

Pi,k|k−1 =

2nx∑
j=0

W
(c)
j (χi,j,k|k−1 − x̂i,k|k−1)(χi,j,k|k−1 − x̂i,k|k−1)

T +Qi,k , (4)

P y
i,k|k−1=

2nx∑
j=0

W
(c)
j (γi,j,k|k−1−ŷi,k|k−1)(γi,j,k|k−1 − ŷi,k|k−1)

T+Ri,k,P
xy
i,k|k−1=

2nx∑
j=0

W
(c)
j (χi,j,k|k−1−x̂i,k|k−1)(γi,j,k|k−1−ŷi,k|k−1)

T

Ki,k = P xy
i,k|k−1(P

y
i,k|k−1)

−1 , x̂i,k|k = x̂i,k|k−1 +Ki,k(yi,k − ŷi,k|k−1) , Pi,k|k = Pi,k|k−1 −Ki,kP
y
i,k|k−1K

T
i,k , (5)
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Fig. 2: Simulated data using ODEs.

Pressure Temperature Flow Rate
(10−3MPa) (K) (kg/s)

Fusing UKF 0.123 0.347 0.646
Classic UKF 0.158 0.449 0.802

EKF 2.602 0.333 0.869
PF 1.546 0.164 1.002

TABLE I: RMSE in the presence of measurement noise.

proposed approach is compared in Tab. I with 3 benchmarks
(classic UKF, extended Kalman Filter (EKF), and particle filter
(PF)), achieving higher estimation accuracy. Scenario 2 shows
the effectiveness of the proposed architecture in the presence
of sensor faults. Bias and drift faults as in [5] are considered.

Fig. 3 shows the different behavior of SFDI based on fusing
UKF and classic UKF: the former successfully detects and
isolates the faulty sensors and provides a reliable state estimate
in presence of faulty sensors; the latter fails to provide reliable
detection, isolation, and estimation. More specifically, we used
the probabilities of detection and false alarm to assess SFDI
performance, and the receiver operating characteristic (ROC)
curves for combinations of weak/strong bias/drift faults are
shown in Fig. 4. ROC curves are computed separately for each
physical quantity (pressure, temperature, and flow rate) and
show that the proposed technique achieves high probability
of detection and low probability of false alarm even in the
presence of weak faults (usually more challenging to detect).
Also, corresponding accuracy and RMSE are shown in Tab. II
for fixed (heuristically-selected) threshold.
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Fig. 3: State estimation in presence of faulty sensors with bias
(top) and drift (bottom). Actual/faulty values in black/blue,
estimate from classic/fusing UKF in green/red.
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Fig. 4: ROC curves for the fusing UKF under strong/weak
bias (green/red) and strong/weak drift (blue/magenta) faults.

Faulty
Sensor

Metrics High
Bias

Low
Bias

Strong
Drift

Weak
Drift

Pressure Accuracy (%) 100 100 100 100
RMSE(10−3MPa) 0.48 0.453 0.476 0.431

Temperature Accuracy (%) 93.33 93.33 93.33 86.67
RMSE (K) 0.906 1.0308 1.0812 1.8048

Flow rate Accuracy (%) 100 100 100 100
RMSE (kg/s) 2.1312 2.1528 2.088 2.1876

TABLE II: Accuracy and RMSE of fusing UKF when operat-
ing with different types of faults.

V. CONCLUSIONS

We proposed a model-based SFDI method exploiting data
fusion and UKFs for monitoring natural-gas pipelines whose
transient behavior is characterized by nonlinear hyperbolic
PDEs. Numerical simulations demonstrate the superior per-
formance of the proposed technique (combining data from
multiple sensors) with respect to popular benchmarks. The
results show excellent performance even in the challenging
case of weak faults. Performance validation of the proposed
SFDI method with real-world data from industrial processes
will be considered as future work.
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